QUALITY ASSURANCE OF A HPC CLUSTER: TESTING FOR PERFORMANCE NON-REGRESSION

Tom Cornebize, Arnaud Legrand Laboratoire d'Informatique de Grenoble November 5, 2019 **Typical Performance Evaluation Questions** (Given my application and a supercomputer)

- Before running
 - How many nodes?
 - For how long?
 - Which parameters?

CONTEXT

Typical Performance Evaluation Questions (Given my application and a supercomputer)

- Before running
 - How many nodes?
 - For how long?
 - Which parameters?
- After running
 - Performance as "expected"?
 - Problem in the app or the platform?

Typical Performance Evaluation Questions (Given my application and a supercomputer)

- Before running
 - How many nodes?
 - For how long?
 - Which parameters?
- After running
 - Performance as "expected"?
 - Problem in the app or the platform?

So many large-scale runs, solely to tune performance?!?

Typical Performance Evaluation Questions (Given my application and a supercomputer)

- Before running
 - How many nodes?
 - For how long?
 - Which parameters?
- After running
 - Performance as "expected"?
 - Problem in the app or the platform?

So many large-scale runs, solely to tune performance?!?

Holy Grail: Predictive Simulation on a "Laptop"

Building a predictive model of the durations:

- Computations (dgemm, ...)
- Communications (MPI_send, ...)
- A lot of measures, with different input sizes

Building a predictive model of the durations:

- Computations (dgemm, ...)
- Communications (MPI_send, ...)

A lot of measures, with different input sizes

Some troubles, wrong predictions \Rightarrow Needed to investigate.

Possible issues

- Most of the problems are human mistakes (wrong library version, wrong options, ...)
- A lot of transient phenomena: OS scheduler, temperature changes, core frequencies oscillation...
- A measure can have an impact (positive or negative) on the next measure (cache effects...)

Possible issues

- Most of the problems are human mistakes (wrong library version, wrong options, ...)
- A lot of transient phenomena: OS scheduler, temperature changes, core frequencies oscillation...
- A measure can have an impact (positive or negative) on the next measure (cache effects...)

Design of experiments

- Randomizing the sequence of measures to reduce bias
- Tools: ad-hoc scripts to generate *experiment files*

Down the rabbit hole (2)

Automating the setup

- Job submission, deployment, software stack installation, experiment execution...
- Tools: OAR, Kadeploy, Peanut

Automating the setup

- Job submission, deployment, software stack installation, experiment execution...
- Tools: OAR, Kadeploy, Peanut

Automating the metadata collection

- Date, kernel and library versions, output of every command, CPU temperature, core frequencies...
- Tools: Peanut, custom scripts

Automating the setup

- Job submission, deployment, software stack installation, experiment execution...
- Tools: OAR, Kadeploy, Peanut

Automating the metadata collection

- Date, kernel and library versions, output of every command, CPU temperature, core frequencies...
- Tools: Peanut, custom scripts

Data analysis

- Data visualization (correlations, temporal patterns, distributions)
- Statistics (linear regressions, ANOVA)
- Tools: Python & R with Jupyter, ggplot...

Dahu@Grid'5000

PERFORMANCE OF THE WHOLE CLUSTER: PARALLEL APPLICATION

PERFORMANCE OF THE WHOLE CLUSTER: PARALLEL APPLICATION

PERFORMANCE OF THE WHOLE CLUSTER: PARALLEL APPLICATION

Same software, same hardware, 10% performance drop

SINGLE-NODE PERFORMANCE

Evolution of the performance on Dahu's nodes

Performance drop for dahu-{13...16} after a few minutes

THE GOOD & THE BAD: PERFORMANCE EVOLUTION

THE GOOD & THE BAD: PERFORMANCE EVOLUTION

Performance drop, huge variability, CPU n°0 is worse

The Good & the Bad: Frequency evolution

Frequency drop, huge variability, CPU n°0 is worse

The Good & the Bad: Temperature evolution

Very high temperature \Rightarrow probably a cooling issue

Fixed by changing the node frames

Several other problems encountered on this cluster:

 $\cdot\,$ Connectivity issue (\Rightarrow replug the Omnipath cable, then reboot)

Several other problems encountered on this cluster:

- Connectivity issue (\Rightarrow replug the Omnipath cable, then reboot)
- Memory bandwidth issue (\Rightarrow change the faulty memory stick)

Several other problems encountered on this cluster:

- Connectivity issue (\Rightarrow replug the Omnipath cable, then reboot)
- Memory bandwidth issue (\Rightarrow change the faulty memory stick)
- Important heterogeneity between the nodes (10% difference between the slowest and the fastest, even without cooling problems)

PERSPECTIVES

Objective: finding bugs building models

Side effect: use these models for statistical tests, to automagically detect performance problems

Objective: finding bugs building models

Side effect: use these models for statistical tests, to automagically detect performance problems

Regular and semi-automated performance measures on Grid'5000: https://gitlab.in2p3.fr/tom.cornebize/g5k_data

Several problems detected, some very severe, others more subtile

Objective: finding bugs building models

Side effect: use these models for statistical tests, to automagically detect performance problems

Regular and semi-automated performance measures on Grid'5000: https://gitlab.in2p3.fr/tom.cornebize/g5k_data

Several problems detected, some very severe, others more subtile

Dahu@Grid'5000 had troubles. What about Dahu@Ciment?

tom.cornebize@univ-grenoble-alpes.fr git https://gitlab.in2p3.fr/tom.cornebize/g5k_data