## Modélisation de l'environnement des étoiles jeunes

### **Geoffroy Lesur**

#### avec

IPAG Institut de Planétologie et d'Astrophysique de Grenoble



Jérome Bouvier (IPAG) Antoine Riols (Postdoc, IPAG) Etienne Martel (PhD, IPAG) George Pantolmos (Postdoc, IPAG)





stablished by the European Commission

# Protoplanetary discs



Credit: C. Burrows and J. Krist (STScl), K. Stapelfeldt (JPL) and NASA



Artist view

# Young stars light curves





### Structures are common Example: 12 discs observed by the ALMA telescope (Chile)



[Huang+ 2018]

## Disc structure



### Numerical method I- PLUTO- a finite volume shock-capturing code

Equations of motion

$$\partial_t \rho + \nabla \cdot \rho \boldsymbol{u} = 0,$$
  

$$\partial_t \rho \boldsymbol{u} + \nabla \cdot \left[\rho \boldsymbol{u} \boldsymbol{u} + c_s^2 \rho + \boldsymbol{B}^2 / 2 - \boldsymbol{B} \otimes \boldsymbol{B}\right] = -2\rho \boldsymbol{\Omega} \times \boldsymbol{u} + \rho \boldsymbol{g},$$
  

$$\partial_t \boldsymbol{B} + \nabla \times \left[\boldsymbol{u} \times \boldsymbol{B} + \eta_0 \boldsymbol{J} + \eta_H \boldsymbol{J} \times \hat{\boldsymbol{B}} - \eta_A \boldsymbol{J} \times \hat{\boldsymbol{B}} \times \hat{\boldsymbol{B}}\right] = 0$$
  

$$\nabla \cdot \boldsymbol{B} = 0$$

General conservative form

$$\partial_t Q + \boldsymbol{\nabla} \cdot \boldsymbol{F}(Q) = 0$$

Integrate in space and time:

$$Q_i^{n+1} = Q_i^n + dt(F_{i+1}^n - F_i^n)$$

Flux are computed solving a Riemann problem [Mignone+ 2007, A&A 170:228]



## Numerical method II- PLUTO- features & scalability

- Code in ANSI C
- Checkpointing
- Open source (<u>http://plutocode.ph.unito.it</u>/)
- MPI parallelisation



Figure 1.1: Strong scaling of PLUTO on a periodic domain problem with  $512^3$  grid zones. Left panel: average execution time (in seconds) per step vs. number of processors. Right panel: speedup factor computed as  $T_1/T_N$  where  $T_1$  is the (inferred) execution time of the sequential algorithm and  $T_N$  is the execution time achieved with N processors. Code execution time is given by black circles (+ dotted line) while the solid line shows the ideal scaling.

[PLUTO user guide]

very good scalability up to 30 000 cores

## Workflow



## Disc structure



## **SPIDI Simulations (MHD)**



SPIDI webpage: spidi-eu.org

- MHD modeling of the environment around young Suns
- with Dahu supercomputer
- 1500 6000 hrs (60
   250 days) on a single CPU



**Courtesy G. Pantolmos** 

## **SPIDI Simulations (MHD)**



#### SPIDI webpage: spidi-eu.org

3D example of **SPIDI** simulations (MHD)



disk-planet interaction



- 3D Star Planet Inner-DIsk simulations
- Understand observational signatures of young planets in the inner parts (< 0.1 au) of protoplanetary disks Courtesy G. Pantolmos

## **SPIDI Simulations (RT)**



SPIDI webpage: spidi-eu.org



Gas falls from the disk to stellar surface, making a bright impact point

## **SPIDI Simulations (RT)**



SPIDI webpage: spidi-eu.org

Accretion spot

Inner rim of the disk

## Disc structure



## Disc+wind simulation on Dahu





# Global 3D simulations General General





### Testing ring formation against observations



**Numerical model** 



**Observations** 



[Riols & Lesur in prep]

17

# Contribution of ERC projects to Dahu



Origin: project overheads (~500 cores)

#### Pros:

- No justification required at the EU level
- No depreciation issues
- No need to mention it in the proposal

#### Cons:

 Represents a large fraction of the overhead budget (but depends on the size of your project)



### Origin: eligible costs (640 cores)

Pros:

ERC covers the cost of the machine (in principle)+overheads

#### Cons:

- Depreciation makes your life difficult (need to have the machine bought, set up and running from day 1 of the project)
- Need for a detailed record of the usage of the machine
- A priori incompatible with best effort job (you are not allowed to share your machine)

#### Bottom line: buying clusters on European projects is a tricky business...



Need a code able to run on Exascale HPCs...

Looking for a dev. engineer to port PLUTO on heterogeneous architecture (CPU, GPU, XeonPhi, etc), using the Kokkos framework:



Thank you!